Structural consequences of ferroelectric nanolithography.
نویسندگان
چکیده
Domains of remnant polarization can be written into ferroelectrics with nanoscale precision using scanning probe nanolithography techniques such as piezoresponse force microscopy (PFM). Understanding the structural effects accompanying this process has been challenging due to the lack of appropriate structural characterization tools. Synchrotron X-ray nanodiffraction provides images of the domain structure written by PFM into an epitaxial Pb(Zr,Ti)O(3) thin film and simultaneously reveals structural effects arising from the writing process. A coherent scattering simulation including the superposition of the beams simultaneously diffracted by multiple mosaic blocks provides an excellent fit to the observed diffraction patterns. Domains in which the polarization is reversed from the as-grown state have a strain of up to 0.1% representing the piezoelectric response to unscreened surface charges. An additional X-ray microdiffraction study of the photon-energy dependence of the difference in diffracted intensity between opposite polarization states shows that this contrast has a crystallographic origin. The sign and magnitude of the intensity contrast between domains of opposite polarization are consistent with the polarization expected from PFM images and with the writing of domains through the entire thickness of the ferroelectric layer. The strain induced by writing provides a significant additional contribution to the increased free energy of the written domain state with respect to a uniformly polarized state.
منابع مشابه
In situ deposition/positioning of magnetic nanoparticles with ferroelectric nanolithography
Ferroelectric nanolithography is a new approach to processing nanostructures, which can position multiple components made of various materials into predefined configurations. Local polarization in ferroelectric compounds is manipulated to control the surface electronic structure and direct attachment of molecules and particles. Here, the presence of optically excited electron-hole pairs on ferr...
متن کاملNanoscale Domain Control in Multiferroic BiFeO3 Thin Films
With an ever-expanding demand for data storage, transducers, and microelectromechanical (MEMS) systems applications, materials with superior ferroelectric and piezoelectric responses are of great interest. The lead zirconate titanate (PZT) family of materials has served as the cornerstone for such applications up until now. A critical drawback of this material, however, is the presence of lead ...
متن کاملSurface organization and nanopatterning of collagen by dip-pen nanolithography.
Collagen is a key fibrous protein in biological systems, characterized by a complex structural hierarchy as well as the ability to self-assemble into liquid crystalline mesophases. The structural features of collagen influence cellular responses and material properties, with importance for a wide range of biomaterials and tissue architectures. The mechanism by which fibrillar collagen structure...
متن کاملFerroelectric polymer nanostructures: fabrication, structural characteristics and performance under confinement.
Ferroelectric polymers have recently attracted tremendous research interest due to their potential application in various emerging flexible devices. Nanostructured ferroelectric polymer materials, such as nanorods, nanotube, and nanowires, are essential for miniaturization of the relevant electronic components. More importantly, their improved sensitivity and functionality may be used to enhanc...
متن کاملStudying of various nanolithography methods by using Scanning Probe Microscope
The Scanning Probe Microscopes (SPMs) based lithographic techniques have been demonstrated as an extremely capable patterning tool. Manipulating surfaces, creating atomic assembly, fabricating chemical patterns, imaging topography and characterizing various mechanical properties of materials in nanometer regime are enabled by this technique. In this paper, a qualified overview of diverse lithog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2011